Aku adalah DIA yang kucinta(سَلاَمٌ قَوْلاً مِنْ رَبّ ٍ رَحِيمٍ )

myfamili

Loading...

Senin, 07 Mei 2012

Perencanaan Struktur Baja



6.4.1. Dasar Perencanaan Struktur Baja
Desain struktur harus memenuhi kriteria kekuatan (strength), kemampuan layan (serviceability) dan ekonomis (economy). Kekuatan berkaitan dengan kemampuan umum dan keselamatan struktur pada kondisi pembebanan yang ekstrem. Struktur diharapkan mampu bertahan meskipun terkadang mendapat beban yang berlebihan tanpa mengalami kerusakan dan kondisi yang membahayakan selama waktu pemakaian struktur tersebut. Kemampuan layan mengacu pada fungsi struktur yang sesuai, berhubungan dengan tampilan, stabilitas dan daya tahan, mengatasi pembebanan, defleksi, vibrasi, deformasi permanen, retakan dan korosi, dan persyaratan-persyaratan desain lainnya.
 Ekonomis mengutamakan pada keseluruhan persyaratan biaya material, pelaksanaan konstruksi dan tenaga kerja, mulai tahapan perencanaan, pabrikasi, pendirian dan pemeliharaan struktur. Secara umum ada dua filosofi perencanaan yang dipakai dewasa ini, yaitu:
Filosofi perencanaan tegangan kerja-elastis (working stress design), elemen struktural harus direncanakan sedemikian rupa hingga tegangan yang dihitung akibat beban kerja, atau servis, tidak melampaui tegangan ijin yang telah ditetapkan. Tegangan ijin ini ditentukan oleh peraturan bangunan atau spesifikasi untuk mendapatkan faktor keamanan terhadap tercapainya tegangan batas, seperti tegangan leleh minimum atau tegangan tekuk (buckling). Tegangan yang dihitung harus berada dalam batas elastis, yaitu tegangan sebanding dengan regangan.
Filosofi perencanaan keadaan batas (limit state). Filosofi ini meliputi metoda vang umumnya disebut “perencanaan kekuatan batas,” “perencanaan kekuatan,” “perencanaan plastis,” “perencanaan faktor beban,” “perencanaan batas,” dan yang terbaru “perencanaan faktor daya tahan dan beban” (LRFD/Load and Resistance Factor Design). Keadaan batas adalah istilah umum yang berarti “suatu keadaan pada struktur bangunan di mana bangunan tersebut tidak bisa memenuhi fungsi yang telah direncanakan”.
Keadaan batas dapat dibagi atas kategori kekuatan (strength) dan kemampuan layan (serviceability).
? Keadaan batas kekuatan (atau keamanan) adalah kekuatan daktilitas maksimum (biasa disebut kekuatan plastis), tekuk, lelah (fatigue), pecah (fracture), guling, dan geser.
? Keadaan batas kemampuan layan berhubungan dengan penghunian bangunan, seperti lendutan, getaran, deformasi permanen, dan retak.
Dalam perencanaan keadaan batas, keadaan batas kekuatan atau batas yang berhubungan dengan keamanan dicegah dengan mengalikan suatu faktor pada pembebanan. Berbeda dengan perencanaan tegangan kerja yang meninjau keadaan pada beban kerja, peninjauan pada perencanaan keadaan batas ditujukan pada ragam keruntuhan (failure mode) atau keadaan batas dengan membandingkan keamanan pada kondisi keadaan batas.
6.4.2. Batang Tarik
Batang tarik didefinisikan sebagai batang-batang dari struktur yang dapat menahan pembebanan tarik yang bekerja searah dengan sumbunya. Batang tarik umumnya terdapat pada struktur baja sebagai batang pada elemen struktur penggantung, rangka batang (jembatan, atap dan menara). Selain itu, batang tarik sering berupa batang sekunder seperti batang untuk pengaku sistem lantai rangka batang atau untuk penumpu antara sistem dinding berusuk (bracing). Batang tarik dapat berbentuk profil tunggal ataupun variasi bentuk dari susunan profil tunggal. Bentuk penampang yang digunakan antara lain bulat, plat strip, plat persegi, baja siku dan siku ganda, kanal dan kanal ganda, profil WF, H, I, ataupun boks dari susunan profil tunggal. Secara umum pemakaian profil tunggal akan lebih ekonomis, namun penampang tersusun diperlukan bila:
? Kapasitas tarik profil tunggal tidak memenuhi
? Kekakuan profil tunggal tidak memadai karena kelangsingannya
? Pengaruh gabungan dari lenturan dan tarikan membutuhkan kekakuan lateral yang lebih besar
? Detail sambungan memerlukan penampang tertentu
? Faktor estetika.
Kekakuan batang tarik
Kekakuan batang tarik diperlukan untuk menjaga agar batang tidak terlalu fleksibel. Batang tarik yang terlalu panjang akan memiliki lendutan yang sangat besar akibat oleh berat batang itu sendiri. Batang akan bergetar jika menahan gaya-gaya angin pada rangka terbuka atau saat batang harus menahan alat-alat yang bergetar. Kriteria kekakuan didasarkan pada angka kelangsingan (slenderness ratio), dengan melihat perbandingan L/r dari batang, di mana L=panjang batang dan r=jari-jari kelembaman. Biasanya bentuk penampang batang tidak berpengaruh pada kapasitas daya tahannya terhadap gaya tarik. Kalau digunakan alat-alat penyambung (baut atau paku keling), maka perlu diperhitungkan konsentrasi tegangan yang terjadi disekitar alat penyambung yang dikenal dengan istilah Shear lag. Tegangan lain yang akan timbul adalah tegangan lentur apabila titik berat dari batang-batang yang disambung tidak berimpit dengan garis sumbu batang. Pengaruh ini biasanya diabaikan, terutama pada batangbatang yang dibebani secara statis.
Menurut spesifikasi ini tegangan yang diizinkan harus ditentukan baik untuk luas batang bruto maupun untuk luas efektif netto. Biasanya tegangan pada luas penampang bruto harus direncanakan lebih rendah dari besarnya tegangan leleh untuk mencegah terjadinya deformasi yang besar, sedang luas efektif netto direncanakan untuk mencegah terjadinya keruntuhan lokal pada bagian-bagian struktur. Pada perhitungan-perhitungan dengan luas efektif netto perlu diberikan koefisien reduksi untuk batang tarik. Hal ini bertujuan untuk mengatasi bahaya yang timbul akibat terjadinya Shear lag. Tegangan geser yang terjadi pada baut penyarnbung akan terkonsentrasi pada titik sambungannya. Efek dari Shear lag ini akan berkurang apabila alat penyambung yang digunakan banyak jumlahnya.
Luas penampang bruto, netto dan efektif netto
Luas penampang bruto dari sebuah batang Ag didefinisikan sebagai hasil perkalian antara tebal dan lebar bruto batang. Luas penampang netto didefinisikan sebagai perkalian antara tebal batang dan lebar nettonya. Lebar netto didapat dengan mengurangi lebar bruto dengan lebar dari lubang tempat sambungan yang terdapat pada suatu penampang.
Di dalam AISCS ditentukan bahwa dalam menghitung luas netto lebar dari paku keling atau baut harus diambil 1/16 in lebih besar dari dimensi nominal lubangnya dalam arah normal pada tegangan yang bekerja. AISC memberikan daftar hubungan antara diameter lubang dengan ukuran alat penyambungnya. Untuk lubang-lubang standar, diameter lubang di ambil 1/16 in lebih besar dari ukuran nominal alat penyambung. Dengan demikian di dalam menghitung luas netto, diameter alat penyambung harus ditambah 1/8 in atau (1/16 +1/16).
Batang tarik bulat
Batang tarik yang umum dan sederhana adalah batang bulat berulir. Batang ini biasanya merupakan batang sekunder dengan tegangan rencana yang kecil, seperti (a) pengikat gording untuk menyokong gording pada bangunan industri (Gambar 6.27a); (b) pengikat vertikal untuk menyokong rusuk pada dinding bangunan industri; (c) penggantung, seperrti batang tarik yang menahan balkon (Gambar 6.27c); dan (d) batang tarik untuk menahan desakan pada pelengkung (arch). Batang tarik bulat sering digunakan dengan tarikan awal sebagai ikatan angin diagonal pada dinding, atap dan menara. Tarikan awal bermanfaat untuk memperkaku serta mengurangi lendutan dan getaran yang cenderung meni mbulkan kehancuran lelah pada sambungan. Tarikan awal ini dapat diperoleh dengan merencanakan batang 1/16 in lebih pendek untuk setiap panjang 20 ft.
Batang-batang jadi
Jarak mendatar dari alat sambungan paku keling baut atau las setempat untuk dua buah pelat atau sebuah pelat dan sebuah perletakan rol tidak boleh melebihi 24 kali ketebalan dari pelat yang paling tipis atau 12 in. Jarak mendatar dari baut, paku keling atau las setempat yang menghubungkan dua atau lebih perletakan rol tidak boleh lebih dari 24 in. Untuk batang-batang yang dipisahkan oleh rusuk-rusuk berselang seling, jarak antar rusuk-rusuk penyambung tersebut harus dibuat sedemikian rupa sehingga perbandingan kerampingan dari tiap komponen yang panjangnya diambil sebesar jarak antara alat-alat penyambung dari rusuk, tidak boleh melampaui 240. Pelat penutup berlubang atau pelat pengikat seperti terlihat pada Gambar 6.28 bisa digunakan pada bagian yang terbuka dari batang tarik jadi. Pelat pengikat tersebut harus direncanakan berdasarkankan kriteriakriteria berikut ini:
? Jarak antara pelat harus diambil sedemikian rupa hingga perbandingan kerampingan dari tiap komponen yang berada di antara kedua pelat tersebut tidak melampaui 240.
? Panjang (tinggi) dari pelat pengikat tidak boleh kurang dari dua pertiga jarak horisontal dari alat penyambung paku keling, baut atau  las yang menghubungkan alat tersebut dengan komponen dari batang jadi.
? Tebalnya alat penyambung tidak boleh kurang dari A dari jarak horisontal tersebut.
? Jarak vertikal dari alat-alat penyambung yang terdapat pada pelat pengikat seperti paku keling, baut atau las tidak boleh melampaui 6 in.
? Jarak minimum dari alat-alat penyambung seperti tersebut di atas ke tepi-tepi pelat pengikat sesuai persyaratan.
6.4.3. Batang Tekan
Pada struktur baja terdapat 2 macam batang tekan, yaitu:
1. Batang yang merupakan bagian dari suatu rangka batang. Batang ini dibebani gaya tekan aksial searah panjang batangnya. Umumnya pada suatu rangka batang maka batang-batang tepi atas merupakan batang tekan
2. Kolom merupakan batang tekan tegak yang bekerja untuk menahan balok-balok loteng, balok lantai dan rangka atap, dan selanjutnya menyalurkan beban tersebut ke pondasi.
Batang-batang lurus yang mengalami tekanan akibat bekerjanya gaya-gaya aksial dikenal dengan sebutan kolom. Untuk kolom-kolom yang pendek ukurannya, kekuatannya ditentukan berdasarkan kekuatan leleh dari bahannya. Untuk kolom-kolom yang panjang kekuatannya ditentukan faktor tekuk elastis yang terjadi, sedangkan untuk kolom-kolom yang ukurannya sedang, kekuatannya ditentukan oleh faktor tekuk plastis yang terjadi. Sebuah kolom yang sempurna yaitu kolom yang dibuat dari bahan yang bersifat isotropis, bebas dari tegangan-tegangan sampingan, dibebani pada pusatnya serta mempunyai bentuk yang lurus, akan mengalami perpendekan yang seragarn akibat terjadinya regangan tekan yang seragam pada penampangnya. Kalau beban yang bekerja pada kolom ditambah besarnya secara berangsur-angsur, maka akan mengakibatkan kolom mengalami lenturan lateral dan kemudian mengalami keruntuhan akibat terjadinya lenturan tersebut. Beban yang mengakibatkan terjadinya lenturan lateral pada kolom disebut beban kritis dan merupakan beban maksimum yang masih dapat ditahan oleh kolom dengan aman.
Keruntuhan batang tekan dapat terjadi dalam 2 kategori, yaitu
1. Keruntuhan yang diakibatkan terlampauinya tegangan leleh. Hal ini umumnya terjadi pada batang tekan yang pendek
2. Keruntuhan yang diakibatkan terjadinya tekuk. Hal ini terjadi pada batang tekan yang langsing
Kelangsingan batang tekan, tergantung dari jari-jari kelembaman dan panjang tekuk. Jari-jari kelembaman umumnya terdapat 2 harga ?, dan yang menentukan adalah yang harga ? terbesar. Panjang tekuk juga tergantung pada keadaan ujungnya, apakah sendi, jepit, bebas dan sebagainya.
Menurut SNI 03–1729–2002, untuk batang-batang yang direncanakan terhadap tekan, angka perbandingan kelangsingan ë =Lk/r dibatasi sebesar 200 mm. Untuk batang-batang yang direncanakan terhadap tarik, angka perbandingan kelangsingan L/r dibatasi sebesar 300 mm untuk batang sekunder dan 240 mm untuk batang primer. Ketentuan di atas tidak berlaku untuk batang bulat dalam tarik. Batang-batang yang ditentukan oleh gaya tarik, namun dapat berubah menjadi tekan yang tidak dominan pada kombinasi pembebanan yang lain, tidak perlu memenuhi batas kelangsingan batang tekan.
Panjang tekuk
Nilai faktor panjang tekuk (kc) bergantung pada kekangan rotasi dan translasi pada ujung-ujung komponen struktur. Untuk komponen struktur takbergoyang, kekangan translasi ujungnya dianggap tak-hingga, sedangkan untuk komponen struktur bergoyang, kekangan translasi ujungnya dianggap nol. Nilai faktor panjang tekuk (kc) yang digunakan untuk komponen struktur
dengan ujung-ujung ideal ditunjukkan pada Gambar 6.30.
6.4.4. Batang Lentur
Batang lentur didefinisikan sebagai batang struktur yang menahan baban transversal atau beban yang tegak lurus sumbu batang. Batangbatang lentur pada struktur yang biasanya disebut gelagar atau balok bisa dikategorikan sebagai berikut:
? Joist: adalah susunan gelagar-gelagar dengan jarak yang cukup dekat antara satu dan yang lainnya, dan biasanya berfungsi untuk menahan lantai atau atap bangunan
? Lintel: adalah balok yang membujur pada tembok yang biasanya berfungsi untuk menahan beban yang ada di atas bukaan-bukaan dinding seperti pintu atau jendela
? Balok spandrel: adalah balok yang mendukung dinding luar bangunan yang dalam beberapa hal dapat juga menahan sebagian beban lantai
? Girder: adalah susunan gelagar-gelagar yang biasanya terdiri dari kombinasi balok besar (induk) dan balok yang lebih kecil (anak balok)
? Gelagar tunggal atau balok tunggal
Gelagar biasanya direncanakan sebagai gelagar sederhana (simple beam) dengan perletakan sendi-rol, perletakan jepit, jepit sebagian atau sebagai balok menerus.
Gelagar atau balok pada umumnya akan mentransfer beban vertikal sehingga kemudian akan terjadi lenturan. Pada saat mengalami lenturan, bagian atas dari garis netral tertekan dan bagian bawah akan tertarik, sehingga bagian atas terjadi perpendekan dan bagian bawah terjadi perpanjangan. Struktur balok sebagai batang lentur harus memenuhi tegangan  lentur yang diijinkan. Tegangan lentur balok adalah hasil pembagian antara perkalian momen lentur dan jarak dari serat penampang terjauh ke garis netral, dengan momen inersia penampang. Menurut AISC, pada kondisi umum tegangan lentur yang diijinkan sebesar:
Fb = 0.66 Fy.
Batang lentur juga harus memenuhi syarat-syarat kekompakan sayap profil batang baja dan tunjangan lateral dari sayap tekan. Batang lentur kompak didefinisikan sebagai batang yang mampu mencapai batas momen plastisnya sebelum terjadi tekuk pada batang tersebut. Hampir semua profil W dan S mempunyai sifat kompak.
Tunjangan lateral dari gelagar
Apabila ada beban transversal yang bekerja pada gelagar maka sayap tekan akan  bertingkah laku dalarn cara yang sama seperti sebuah kolom. Apabila panjang gelagar bertam- bah, maka sayap tekan bisa mengalami tekukan. Terjadinya perpindahan ini pada sumbu yang lebih lemah akan menyebabkan timbulnya puntiran yang akhirnya bisa menyebabkan terjadinya keruntuhan. Batang-batang yang mengalami pembengkokan bukan pada sumbu utamanya tidak memerlukan konstruksi ikatan. Namun demikian batang-batang tersebut harus memenuhi syarat-syarat yang dimuat dalam AISCS 1.9.2. Struktur kotak biasanya tidak memerlukan konstruksi ikatan menurut ketentuan dalarn AISCS 1.5.1.4. 1. dan 1.5.1.4.4. Batang-batang yang mengalami pembengkokan pada sumbu utamanya, perlu mendapatkan konstruksi ikatan pada sayap tekannya untuk mencegah terjadinya ketidakstabilan lateral.
Untuk menentukan bentuk tunjangan lateral, diperlukan suatu penilaian tertentu sesuai dengan keadaan yang dihadapi. Sebuah gelagar yang dibungkus dengan beton dapat dikatakan telah dilengkapi dengan tunjangan lateral pada seluruh bentangnya. Balok bersilangan yang mengikat gelagar yang satu dengan gelagar yang lainnya apabila disambung dengan baik pada sayap tekan, juga merupakan suatu tunjangan lateral. Dalam hal ini perlu diperhatikan bahwa balok silang tersebut harus rnempunyai kekakuan yang cukup baik. Kadang-kadang kita perlu memberikan ikatan diagonal pada suatu bagian tertentu untuk mencegah terjadinya pergerakan pada kedua arah. Konstruksi ikatan seperti yang diperlihatkan pada Gambar 6.31. dapat memberikan kekakuan pada beberapa bagian lainnya. Lantai metal dalam beberapa hal bukanlah merupakan konstruksi ikatan lateral. Setelah diberikan sambungan-sambungan secukupnya, barulah lantai metal dapat dianggap sebagai konstruksi ikatan lateral. Kasus-kasus tunjangan parsial (sebagian) bisa diubah menjadi tunjangan sepenuhnya dengan melipat gandakan jarak celahnya. Misalnya lantai yang dipaku mati setiap empat ft bisa dianggap sebagai sepertiga dari tunjangan lateral yang utuh, dan pada jarak 12 ft lantai tersebut akan merupakan suatu tunjangan yang utuh.
Gaya geser
Pada sebuah gelagar yang diberikan beban berupa momen lentur positif, serat-serat bagian bawah batang tersebut akan mengalami perpanjangan, sedang serat-serat bagian atasnya akan mengalami perpendekan dan pada sumbu netralnya panjang serat tidak akan mengalami perubahan (lihat Gambar 6.32).
Karena adanya deformasi yang bervariasi ini, maka tiap-tiap serat mempunyai kecenderungan untuk bergeser terhadap serat lainnya. Kalau sebuah gelagar dibentuk dari lembaran-lembaran papan yang disusun sedemikian rupa sehingga papan yang satu berada di atas papan yang lain dan kemudian diberi beban transversal, maka akan terjadi suatu konfigurasi seperti yang bisa kita lihat pada Gambar 6.33 (a).
Kalau papan-papan tersebut disambung antara yang satu dengan yang lainnya seperti yang terlihat pada Gambar 6.33(b), maka kecenderungan untuk terjadinya pergeseran antara papan yang satu dengan papan yang lainnya akan di tahan oleh kemampuan daya tahan terhadap geseran dari alat penyambungnya. Untuk sebuah gelagar tunggal, kecenderungan untuk bergeser ditahan oleh kekuatan daya tahan terhadap geser dari materialnya. Menurut AISC, pada kondisi umum tegangan lentur yang diijinkan sebesar:
Fv= 0.40 Fy.
Lubang-lubang pada gelagar
Sedapat mungkin lubang-lubang pada gelagar harus dihindarkan. Apabila lubang-lubang mutlak diperlukan, harus diusahakan untuk menghindari adanya lubang pada badan profil yang mengalami gaya geser besar dan pada bagian sayap yang mengalami beban momen besar. Sambungan ujung gelagar yang menggunakan baut pada badan profil yang tipis dapat menciptakan suatu kondisi robeknya badan profil. Keruntuhan  dapat terjadi akibat kombinasi bekerjanya gaya geser/lintang melalui baris-baris baut dan gaya tarikan pada penampang bidang baut.
Keruntuhan badan profil
Gelagar dapat mengalami kegagalan dalam menjalankan fungsinya akibat terjadinya keruntuhan pada badan profil, serta pada titik-titik terdapatnya konsentrasi tegangan yang besar karena bekerjanya beban terpusat atau adanya reaksi perletakan. Hal ini dapat dicegah dengan memakai pengaku-pengaku badan vertikal. Keruntuhan terjadi pada ujung rusuk badan, pada titik gelagar menyalurkan tekanan dari sayap yang relatif lebar ke badan profil yang sempit. Dalam perhitungan tegangan pada badan profil bekerja menyebar sepanjang badan, dengan sudut 45°.
Lenturan
Lenturan dari sebuah batang struktur merupakan fungsi dari momen inersianya. Lenturan yang diijinkan pada gelagar biasanya dibatasi oleh peraturan dan perlu diperiksa dalam proses pemilihan gelagar. Menurut AISC batas lenturan terhadap beban hidup dari gelagar yang menyangga langit-langit sebesar 1/360 panjang bentangnya.
6.4.5. Kombinasi Lentur dan Gaya Aksial
Hampir semua batang pada struktur memikul momen lentur dan beban axial, baik tarik ataupun tekan. Bila salah satu relatif kecil, pengaruhnya biasanya diabaikan dan batang direncanakan sebagai balok, sebagai kolorn dengan beban aksial, atau sebagai batang tarik. Dalam banyak hal, kedua pengaruh tersebut tidak dapat diabaikan dan kelakuan akibat beban gabungan harus diperhitungkan dalam perencanaan. Batang yang memikul  tekanan aksial dan momen lentur disebut balok-kolom. Oleh karena batang mengalami lentur, semua faktor lenturan, geser, serta puntir atau torsi berlaku di sini, terutama faktor yang berkaitan dengan stabilitas, seperti tekuk puntir lateral dan tekuk setempat pada elemen tekan.
Bila lentur digabungkan dengan tarikan aksial, kemungkinan menjadi tidak stabil berkurang dan kelelehan (yielding) biasanya membatasi perencanaan. Untuk gabungan lentur dengan tekanan aksial, kemungkinan menjadi tidak stabil meningkat dan semua pertimbangan yang terkait dengan batang tekan juga berlaku. Disamping itu, bila batang memikul tekanan aksial, batang akan mengalami momen lentur sekunder yang sama dengan gaya tekanaksial kali lendutan.
Beberapa kategori gabungan lentur dan beban aksial bersama dengan ragam kegagalan (mode of failure) yang mungkin terjadi dapat diringkas sebagai berikut:
? Tarikan aksial dan lentur: kegagalan biasanya karena leleh
? Tekanan aksial dan lentur terhadap satu sumbu: kegagalan disebabkan oleh ketidakstabilan pada bidang lentur, tanpa puntir. (contoh, balok-kolom dengan beban transversal yang stabil terhadap tekuk puntir lateral)
? Tekanan aksial dan lentur terhadap sumbu kuat: kegagalan disebabkan tekuk puntir lateral
? Tekanan aksial dan lentur biaksial (dua sumbu)-penampang yang kuat terhadap puntir, kegagalan disebabkan oleh ketidak-stabilan pada satu arah utama. (Profil W biasanya termasuk kategori ini)
? Tekanan aksial dan lentur biaksial-penampang, terbuka berdinding tipis (penampang yang lemah terhadap puntir): kegagalan disebabkan oleh gabungan puntir dan lentur.
? Tekanan aksial, lentur biaksial, dan puntir: kegagalan akan disebabkan oleh gabungan puntir dan lentur bila pusat geser tidak terletak pada bidang lentur.
Oleh karena banyaknya ragam kegagalan, kelakuan yang beraneka ragam ini umumnya tidak dapat disertakan dalam cara perencanaan yang sederhana. Prosedur-prosedur perencanaan yang ada dapat dibedakan atas tiga kategori berikut: (1) pembatasan tegangan gabungan; (2) rumus interaksi semi empiris berdasarkan metode tegangan kerja (working stress), dan (3) prosedur interaksi semi empiris berdasarkan kekuatan batas. Pembatasan tegangan gabungan biasanya tidak menghasilkan kriteria yang tepat kecuali ketidak-stabilan dicegah atau faktor keamanannya besar. Persamaan interaksi mendekati kelakuan yang sebenarnya karena persamaan ini memperhitungkan keadaan stabilitas yang biasanya dijumpai. Rumus Spesifikasi AISC untuk balok-kolom merupakan jenis interaksi.
6.4.6. Gelagar Plat
Gelagar plat (plate girder) adalah balok yang dibentuk oleh elemenelemen plat untuk mencapai penataan bahan yang lebih efisien dibanding dengan yang bisa diperoleh dari balok profil giling (rolled shape). Gelagar plat akan ekonomis bila panjang bentang sedemikian rupa hingga biaya untuk keperluan tertentu bisa dihemat dalam perencanaan. Gelagar plat bisa berbentuk konstruksi paku keling, baut atau las. Pada awalnya gelagar plat dengan paku keling (Gambar 6.38) yang terbuat dari profil-profil siku yang disambung ke plat badan, dengan atau tanpa plat rangkap (cover plate). Bentuk ini digunakan pada bentangan yang berkisar antara 50 dan 150 ft. Saat ini gelagar plat umumnya selalu dilas di bengkel dengan menggunakan dua plat sayap dan satu plat badan untuk membentuk penampang melintang profil I.
Sementara semua gelagar plat yang dikeling umumnya terbuat dari plat dan profil siku dengan bahan yang titik lelehnya sama, gelagar yang dilas dewasa ini cenderung dibuat dari bahan-bahan yang kekuatannya berlainan. Dengan merubah bahan di berbagai lokasi sepanjang bentang sehingga kekuatan bahan yang lebih tinggi berada di tempat momen dan/atau gaya geser yang besar, atau dengan memakai bahan yang kekuatannya berlainan untuk sayap dan badan (gelagar campuran/hibrida), gelegar menjadi lebih efisien dan ekonomis.
Pengertian yang lebih baik tentang kelakuan gelagar plat, baja yang berkekuatan lebih tinggi, dan teknik pengelasan yang sudah maju membuat gelagar plat ekonomis untuk banyak keadaan yang dahulu dianggap ideal untuk rangka batang, Umumnya, bentangan sederhana sepanjang 70 sampai 150 ft (20 sampai 50 m) merupakan jangkauan pemakaian gelegar plat. Untuk jembatan, bentang menerus dengan pembesaran penampang (penampang dengan tinggi variabel) sekarang merupakan aturan bagi bentangan sepanjang 90 ft atau lebih. Ada beberapa gelagar plat menerus tiga bentang di Amerika dengan bentang tengah yang melampaui 400 ft, dan bentangan yang lebih panjang mungkin akan dibuat di masa mendatang.
Gelegar plat terpanjang di dunia adalah struktur menerus tiga bentang yang melintasi Sungai Save di Belgrado, Yugoslavia, dengan bentang 246-856- 246 ft (175-260-75 m). Penampang lintang jembatan ini berupa gelegar boks ganda yang tingginya berkisar antara 14 ft 9 in (4,5 m) di tengah bentang dan 31 ft 6 in (9,6 m) di atas pilar. Tiga jenis gelegar plat yang lain diperlihatkan pada Gambar 6.40 :
? gelagar boks, memiliki kekakuan puntir besar dan digunakan untuk jembatan dengan bentangan yang panjang,
? gelagar campuran, yang terbuat dari bahan dengan kekuatan yang berlainan sesuai dengan tegangan;
? gelagar delta, yang memiliki kekakuan lateral yang besar untuk bentang tanpa sokongan samping (lateral support) yang panjang.
Konsep umum perencanaan gelagar plat makin cenderung didasarkan pada kekuatan batas. Gelagar plat dengan pengaku yang jaraknya direncanakan dengan tepat memiliki perilaku (setelah ketidakstabilan pada badan terjadi) yang hampir mirip seperti rangka batang, dengan badan sebagai pemikul gaya tarik diagonal dan pengaku sebagai pemikul gaya tekan. Perilaku seperti rangka batang ini disebut aksi medan tarik (tension field). Teori tekuk klasik pun menyadari bahwa kapasitas cadangan bisa diperoleh karena faktor keamanan terhadap tekuk badan lebih rendah daripada terhadap kekuatan batang keseluruhan.
Ketidakstabilan yang berkaitan dengan beban pada plat badan
Bila perencana bebas menata bahan untuk mencapai pemikulan beban yang paling efisien, maka jelaslah bahwa untuk momen lentur yang hampir seluruhnya dipikul oleh sayap, penampang yang tinggi lebih disukai. Badan diperlukan agar sayap-sayap bekerja sebagai satu kesatuan dan untuk memikul gaya geser, tetapi tebal badan yang berlebihan menambah berat gelagar. Ditinjau dari sudut bahan, badan yang tipis dengan pengaku akan menghasilkan gelagar yang paling ringan. Dengan demikian, stabilitas plat badan yang tipis menjadi masalah utama.
Ketidakstabilan pada plat badan antara lain diakibatkan adanya:
? Tekuk elastis akibat geser murni
? Tekuk inelastis akibat geser murni
? Gabungan geser dan lentur
? Tekuk elastis akibat tekanan merata
Ketidakstabilan pada sayap tekan
Plat-plat sayap pada balok profil giling dihubungkan oleh badan yang relatif tebal sehingga kedua sayap bekerja sebagai satu kesatuan (kekakuan puntir yang besar) ketika ketidakstabilan lateral hampir terjadi. Bila h/t plat badan diperbesar, pengaruh dari sayap tarik menurun (kekuatan kolom. sayap tekan berdasarkan kekakuan lentur lateral lebih dominan). Jika h/t melampaui harga kritis uriluk tekuk akibat lentur pada bidang badan, maka penampang lintang akan berlaku memikul tegangan lentur seolah-olah sebagian badan tidak ada. Akibatnya, sokongan vertikal yang diberikan oleh badan pada sayap tekan akan banyak berkurang dan kemungkinan tekuk vertikal pada sayap harus ditinjau. Juga, setelah sokongan badan terhadap sayap berkurang, tekuk puntir sayap yang berbentuk T (gabungan sayap dan segmen badan) cenderung terjadi, tergantung pada tebal badan dan banyaknya bagian badan yang bekerja sebagai satu kesatuan dengan plat sayap.
Ketidakstabilan pada sayap tekan antara lain diakibatkan adanya
? Tekuk puntir lateral
? Tekuk vertikal
? Tekuk puntir
6.4.7. Jenis Konstruksi Sambungan pada Struktur Baja
Konstruksi sambungan pada struktur baja pada umumnya dikategorikan atas:
Sambungan portal kaku, yaitu sambungan yang memiliki kontinuitas penuh sehingga sudut pertemuan antara batang-batang tidak berubah, yakni dengan pengekangan (restraint) rotasi sekitar 90% atau lebih. Sambungan ini umumnya digunakan pada metode perancangan plastis.
Sambungan kerangka sederhana, yaitu sambungan dengan pengekangan rotasi pada ujung batang sekecil mungkin. Suatu kerangka dianggap sederhana jika sudut semula antara batang-batang yang berpotongan dapat berubah sampai 80% dari besarnya perubahan teoritis yang diperoleh dengan menggunakan sambungan sendi tanpa gesekan. Sambungan kerangka semi kaku, yaitu sambungan dengan pengekangan antara 20-90% dari yang diperlukan untuk mencegah perubahan sudut.
6.4.8. Sambungan balok sederhana
Jenis sambungan balok sederhana umumnya digunakan untuk menyambung suatu balok ke balok lainnya atau ke sayap kolom. Sambungan balok sederhana yang dilas dan dibaut diperlihatkan pada gambar 6.41. Pada sambungan ini, siku penyambung dibuat sefleksibel mungkin. Gambar 6.41(a), adalah sambungan dengan dengan 5 lubang baut yang digambarkan dengan lingkaran lubang baut yang diblok berwarna hitam. Sedangkan pada gambar 9.38(b), adalah sambungan ke badan balok dengan lubang baut yang dikerjakan di bengkel yang digambarkan dengan lingkaran yang tidak diblok. Sambungan dengan siku penyambung dapat juga dilas seperti pada gambar 6.41 (c) dan (d).
Dalam praktek konstruksi saat ini, sambungan yang dibuat di bengkel umumnya dilas sedangkan sambungan di lapangan dapat dibaut ataupun dilas. Bila sebuah balok disambungkan dengan balok lain sehingga sayap balok berada pada level yang sama, sayap balok harus dipotong/ditoreh. Kehilangan sayap tidak banyak mengurangi kekuatan geser, karena bagian sayap hanya memikul sedikit gaya geser
6.4.9. Sambungan balok dengan dudukan tanpa perkuatan
Merupakan alternatif dari sambungan balok sederhana dengan siku badan. Balok dapat ditumpu pada satu dudukan tanpa perkuatan (stiffened). Dudukan (siku) tanpa perkuatan seperti ditunjukan pada gambar 6.42 dan direncanakan untuk memikul reaksi penuh. Sambungan dengan dudukan ditujukan hanya untuk memindahkan reaksi vertikal dan tidak boleh menimbulkan momenmyang besar pada ujung balok.
Tebal dudukan ditentukan oleh tegangan lentur pada penampang kritis siku tersebut, seperti pada gambar 6.43. Pada gambar 6.43(a), dipakai sambungan baut tanpa penyambungan ke balok. Penampang kritis diambil pada penampang netto yang melalui barisan baut teratas. Jika balok dihubungkan ke siku seperti gambar 6.43(b), rotasi ujung balok menimbulkan gaya yang cenderung mencegah pemisahan balok dari kolom. Pada sambungan yang dilas, las penuh pada sepanjang ujung dudukan akan melekatkan siku pada kolom, sehingga penampang kritisnya seperti ditunjukan pada gambar 6.43(c), tanpa memandang apakah balok dihubungkan dengan dudukannya.
6.4.10. Sambungan dudukan dengan perkuatan
Bila reaksi pada dudukan terlalu berat, siku dudukan pada konstruksi baut dapat diperkuat, atau dudukan dengan perkuatan yang berbentuk T pada konstruksi las. Dudukan dengan perkuatan ini juga tidak ditujukan untuk sambungan penahan momen, tetapi hanya untuk menahan beban vertikal. Sambungan dudukan dengan perkuatan dapat dilihat pada Gambar 6.44.
6.4.11. Sambungan dengan plat konsol segitiga
Merupakan sambungan dudukan perkuatan yang dipotong menjadi bentuk segitiga. Pada plat kecil dengan perkuatan yang memikul reaksi balok, bahaya yang timbul karena tekuk akan sangat kecil jika dipotong menjadi bentuk segitiga. Secara umum penguat akan menghasilkan tumpuan yang lebih kaku jika dibandingkan dengan bentuk segi empat.
6.4.12. Sambungan menerus balok ke kolom
Sambungan menerus balok ke kolom bertujuan untuk memindahkan semua momen dan memperkecil atau meniadakan rotasi batang pada sambungan (jenis sambungan portal kaku). Karena sayap suatu balok memikul hampir seluruh momen lentur melalui gaya tarik dan gaya tekan sayap yang terpisah oleh lengan momen yang kira-kira sama dengan tinggi balok. Karena gaya geser utamanya dipikul oleh badan balok, maka kontinuitas penuh mengharuskan gaya geser dipindahkan langsung dari badan balok.
Konstruksi sambungan menerus balok ke kolom dapat diletakan ke sayap kolom dengan menggunakan sambungan las (Gambar 6.46) atau dengan sambungan baut (Gambar 6.47). Selain itu sambungan kolom juga dapat diletakan ke badan kolom seperti pada Gambar 6.48. Kolom dapat berhubungan secara kaku dengan balok-balok pada kedua sayapnya, seperti pada gambar 6.46 (a),(b) dan (c), atau yang hanya disambungkan pada satu sayap seperti pada gambar 6.46 (d).
6.4.13. Sambungan menerus balok ke balok
Bila sambungan balok bertemu secara tegak lurus dengan balok atau gelagar lain, balok dapat disambungkan ke badan gelagar dengan sambungan balok sederhana atau dengan gabungan dudukan dan sambungan balok sederhana. Untuk balok menerus dengan kontinuitas yang akan dipertahankan, sambungan harus memiliki derajat kekakuan yang lebih tinggi. Tujuan sambungan balok ke balok adalah untuk menyalurkan gaya tarik pada salah satu sayap balok ke balok lain yang bertemu pada sisi badan balok atau gelagar yang lain. Sambungan ini dibedakan atas: sambungan dengan sayap-sayap tarik yang bertemu tidak disambung secara kaku (gambar 6.49) dan sambungan dengan sayapsayap yang bertemu dan disambungkan secara kaku (gambar 6.50)
6.4.14. Sambungan sudut portal kaku
Pada perencanaan portal kaku menurut perencanaan plastis, pemindahan tegangan yang aman di pertemuan balok dan kolom sangat penting. Bila batang-batang bertemu hingga badannya terletak pada bidang portal, pertemuannya disebut sambungan sudut (knee joint). Sambungan
yang sering digunakan adalah:
???? Sudut lurus dengan atau tanpa pengaku diagonal atau lainnya (Gambar 6.51 a dan b)
???? Sudut lurus dengan konsol (Gambar 6.51 c)
???? Sudut dengan pelebaran lurus (straight haunched) (Gambar 6.51 d)
???? Sudut dengan pelebaran lengkung (curved haunched) (Gambar 6.51 e)
6.4.15. Sambungan pada alas kolom
Sambungan pada alas kolom harus memperhatikan: (1) gaya tekan pada sayap kolom harus disebar oleh plat alas ke media penyangganya sedemikian sehingga tegangan tumpunya masih dalam batas-batas yang diijinkan, (2) penjangkaran pada alas kolom ke pondasi beton. Pada alas kolom yang memikul beban aksial, dimensi dan pembebanan plat alas seperti dutunjukan pada gambar 6.52. Distribusi tegangan di bawah plat alas dianggap merata dan daerah di luar penampang kritis dianggap bekerja seperti balok kantilever. Alas kolom pada umumnya harus menahan momen disamping gaya aksial. Ketika momen bekerja, pratekan pada bagian tarik akibat lentur akan berkurang (seringkali menjadi 0), sehingga daya tahan terhadap tarik hanya diberikan oleh baut angkur.
Pada bagian tekan bidang kontak tetap mengalami tekanan. Penjangkaran mampu menjalani deformasi rotasi yang tergantung pada panjang baut angkur untuk berubah bentuk secara elastis. Sejumlah metode dan detail konstruksi yang rumit dikembangkan pada perencanaan alas kolompenahan momen, yang bervariasi tergantung pada besarnya eksentrisitas beban dan detail penjangkaran yang khusus. Beberapa detail sambungan alas kolom untuk menahan momen diperlihatkan pada Gambar 6.53.
6.4.16. Baja sebagai Elemen Komposit
Kerangka baja yang menyangga konstruksi plat beton bertulang yang dicor di tempat pada awalnya direncanakan dengan anggapan bahwa plat beton dan baja bekerja secara terpisah dalam menahan beban. Pengaruh komposit dari baja dan beton yang bekerja sama tidak diperhitungkan.
Pengabaian ini didasarkan pada alasan bahwa lekatan (bond) antara lantai atau plat beton dan bagian atas balok baja tidak dapat diandalkan. Namun, dengan berkembangnya teknik pengelasan, permakaian alat penyambung geser (shear connector) mekanis menjadi praktis untuk menahan gaya geser horisontal yang timbul ketika batang terlentur. Karena tegangan dalam plat lebar yang bertumpu pada balok baja tidak seragam sepanjang lebar plat, rumus lentur yang biasa (Mc/I) tidak berlaku. Sama seperti pada penampang T yang seluruhnya terbuat dari beton bertulang, plat yang lebar diubah menjadi plat dengan lebar ekuivalen agar rumus lentur dapat diterapkan untuk memperoleh kapasitas momen yang tepat.
Faktor yang penting pada aksi komposit ialah lekatan antara beton dan baja harus tetap ada. Ketika para perencana mulai meletakkan plat beton pada puncak balok baja penyanggah, para peneliti mulai mempelajari kelakuan alat penyambung geser mekanis. Alat penyambung geser menghasilkan interaksi yang diperlukan untuk aksi komposit antara balok baja profil I dan plat beton, yang sebelumnya hanya dihasilkan oleh lekatan untuk balok yang ditanam seluruhnya dalam beton.
Aksi komposit
Aksi komposit timbul bila dua batang struktural pemikul beban seperti konstruksi lantai beton dan balok baja penyangga disambung secara integral  dan melendut secara satu kesatuan. Contoh penampang lintang komposit yang umum diperlihatkan pada Gambar 6.56. Besarnya aksi komposit yang timbul bergantung pada penataan yang dibuat untuk menjamin regangan linear tunggal dari atas plat beton sampai muka bawah penampang baja.
Untuk memahami konsep kelakuan komposit, pertarna tinjaulah balok yang tidak komposit dalam Gambar 6.56(a). Pada keadaan ini, jika gesekan antara plat dan balok diabaikan, balok dan plat masing-masing memikul suatu bagian beban secara terpisah. Bila plat mengalami deformasi akibat beban vertikal, permukaan bawahnya akan tertarik dan memanjang; sedang permukaan atas balok tertekan dan memendek. Jadi, diskontinuitas akan terjadi pada bidang kontak. Karena gesekan diabaikan, maka hanya gaya dalam vertikal yang bekerja antara plat dan balok.
Keuntungan dan kerugian
Keuntungan utama dari perencanaan komposit ialah:
? Penghematan berat baja
? Penampang balok baja dapat lebih rendah
? Kekakuan lantai meningkat
? Panjang bentang untuk batang tertentu dapat lebih besar
? Kapasitas pemikul beban meningkat
Penghematan berat baja sebesar 20 sampai 30% seringkali dapat diperoleh dengan memanfaatkan semua keuntungan dari sistem komposit. Pengurangan berat pada balok baja ini biasanya memungkinkan pemakaian penampang yang lebih rendah dan juga lebih ringan. Keuntungan ini bisa  banyak mengurangi tinggi bangunan bertingkat banyak sehingga diperoleh penghematan bahan bangunan yang lain seperti dinding luar dan tangga. Kekakuan lantai komposit jauh lebih besar dari kekakuan lantai beton yang balok penyanggahnya bekerja secara terpisah. Biasanya plat beton bekerja sebagai plat satu arah yang membentang antara balok-balok baja penyangga. Dalam perencanaan komposit, aksi plat beton dalarn arah sejajar balok dimanfaatkan dan digabungkan dengan balok baja penyanggah. Akibatnya, momen inersia konstruksi lantai dalam arah balok baja meningkat dengan banyak. Kekakuan yang meningkat ini banyak mengurangi lendutan beban hidup dan jika penunjang (shoring) diberikan selama pembangunan, lendutan akibat beban mati juga akan berkurang.
Pada aksi komposit penuh, kekuatan batas penampang jauh melampaui jumlah dari kekuatan plat dan balok secara terpisah sehingga timbul kapasitas cadangan yang tinggi. Keuntungan keseluruhan dari permakaian konstruksi komposit bila ditinjau dari segi biaya bangunan total nampaknya baik dan terus meningkat. Pengembangan kombinasi sistem lantai yang baru terus menerus dilakukan, dan pemakaian baja berkekuatan tinggi serta balok campuran dapat diharapkan memberi keuntungan yang lebih banyak. Juga, sistem dinding komposit dan kolom komposit mulai dipakai pada gedung-gedung. Walaupun konstruksi komposit tidak memiliki kerugian utama, konstruksi ini memiliki beberapa batasan yang sebaiknya disadari, yakni:
? Pengaruh kontinuitas
? Lendutan jangka panjang
Lendutan jangka panjang dapat menjadi masalah jika aksi penampang komposit menahan sebagian besar beban hidup atau jika beban hidup terus bekerja dalam waktu yang lama. Namun, masalah ini dapat dikurangi dengan memakai lebar plat efektif yang diredusir atau dengan memperbesar rasio modulus elastisitas n.
Alat Penyambung Geser Komposit
Gaya geser horisontal yang timbul antara plat beton dan balok baja selama pembebanan harus ditahan agar penampang komposit bekerja secara monolit. Walaupun lekatan yang timbul antara plat beton dan balok baja mungkin cukup besar, Iekatan ini tidak dapat diandahkan untuk memberi interaksi yang diperlukan. Juga, gaya gesek antara plat beton dan balok baja tidak mampu mengembangkan interaksi ini. Sebagai gantinya, alat penyambung geser mekanis yang disambung ke bagian atas balok baja harus diberikan. Alat penyambung geser yang umum diperlihatkan pada Gambar 6.57.
Sumber :
Ariestadi, Dian, 2008, Teknik Struktur Bangunan Jilid 2 untuk SMK, Jakarta : Pusat Perbukuan Departemen Pendidikan Nasional, h. 301 – 332.

0 komentar:

Daftar Blog Saya

Comments

Isi menu tab view 1
Isi menu tab view 2
Isi menu tab view 3

Magister Teknik Struktur 2010

Magister Teknik Struktur 2010
kiri ke kanan(Aco Wahyudi Efendi, Gunaedi Utomo, Eka Purnamasari, Deni Teras)

Mahasiswa Magister Teknik Sipil Jurusan Teknik Struktur Angkatan 2010 Universitas Lambung Mangkurat

Mahasiswa Magister Teknik Sipil Jurusan Teknik Struktur Angkatan 2010 Universitas Lambung Mangkurat
dari kiri kekanan(Deny Teras,Solikun,Gunaedi Utomo,Aco Wahyudi Efendi, Melius P Taruna, Eka Purnamasari(tukang foto heuheuheueheu)

rain al-majnun

rain al-majnun
gazur-i-ilahi
quancons.blogspot.com quancons.blogspot.com quancons.blogspot.com quancons.blogspot.com